3x^2+6x-10=180

Simple and best practice solution for 3x^2+6x-10=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+6x-10=180 equation:



3x^2+6x-10=180
We move all terms to the left:
3x^2+6x-10-(180)=0
We add all the numbers together, and all the variables
3x^2+6x-190=0
a = 3; b = 6; c = -190;
Δ = b2-4ac
Δ = 62-4·3·(-190)
Δ = 2316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2316}=\sqrt{4*579}=\sqrt{4}*\sqrt{579}=2\sqrt{579}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{579}}{2*3}=\frac{-6-2\sqrt{579}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{579}}{2*3}=\frac{-6+2\sqrt{579}}{6} $

See similar equations:

| 10-15-4x=8-2x-15 | | 8^x=79 | | 5(f-0.4)=22-9(0.2f+1.6) | | 4(x+2)÷4=26 | | 3(10-w)+6w=-21 | | 1u+1=2 | | 5a-2-12a=-17-4a | | 4x-2(3x-5)=7-(2x-3) | | 39-2n=n | | (2n-1)^5=0 | | 3x+5+2=18+4 | | 4x^2-9x-32=0 | | m+3/4=3m+2/5 | | 10^(3x)+100=1400 | | (2)/(7)y-(1)(7)=5/7y+2/7 | | 3/8m-1/2=1/2m+7/8 | | 6(×+1)=3x | | x+2x+(5x+20)=180 | | 7(18-x)-6(3-5x)=-(7x+9)-3(2x+5)=12 | | (2x^2+5x)^2-10x-25x=14 | | 10x-4=8-6x | | 905=72;r=7 | | 7-5(3x-4)=3-(2x+5)-12 | | 7-5(3x-4)=-(2x+5)-12 | | 2/7y-1/7=5/7y+2/7 | | 13m-2=9m-6 | | 2x-5x+3-3-2-7=0 | | 26-11x=10+5x | | 17+5v=62 | | 2x-(5x+3)-7+(3x-2)=0 | | 13+3u=46 | | 8-3.2v=1.6 |

Equations solver categories